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1. INTRODUCTION

Calculation of the input impedance of a dipole antenna located
electrically close to a plane dielectric interface has iraditionally
involved a Sommerfeld integral formulation. This is well known to be
a time consuming and difficult computational task. A good bibliography
cen be found in a book by Banos[1]. A disadvantage of the Scmmzrfeld
formulation is that the mathematical manipulations involved in obtain-
ing a better approximation or a better inteyration path seldom have a
clear physical explanation. This means that it is often difficult to
decide what action to take to facilitate the computation. Sommerfeld
solutions for finite length antennas are difficult to program success-
fully and the resulting program is usually lengthy.

This report presents a simple yet exact formulation for the mutual
impedance between two sinuscidal dipole antennas in the presence of a
half space. This formula can be simply evaluated numerically when the
dipoles are immersed in a lossy medium, and can be used in a moment
method solution using sinusoidal bases and Galerkins method[2]. The
resulting program is relatively compact. The mutual impedance is infer-
red (by the Array Scanning Method) from a convenient formula for the
infinite array impedance developed by Munk, et al[3] which contains a
sum of plane waves. The half space is accounted for by inciuding a
plane wave reflection coefficient for each plane wave. The advantages
of this formulation are that it is exact, it is simple to program, and
it has a clear physical interpretation.

The Array Scanning Method formulation is presented in Section II.
Section III discusses the result. The utility of the method is demon-
strated in Section IV by the presentation of numerical results of the
input impedance of dipoles in lossy half spaces. Several different
cases are presented because there are few results of half space calcu-
lations contained in the literature. In Section V an approximation is
made for low frequencies and conducting media which results in a con-
siderable saving in computer time. As an example 2 moment method solu-
tion for the input impedance for a dipole buried in the earth is pre-
sented. The change in the current distribution as the dipole approaches
to within 2/150,000 of the surface is shown.

I1. THE MUTUAL IMPEDANCE BETWEEN TWO
SINUSOIDAL DIPOLES IN TERMS
OF PLANE WAVES

Munk, et al[3] have developed a convenient formulation for the free

space mutual impedance between a reference dipole located parallel to an
infinite two dimensional plane array of parallel sinusoidal dipoles.
The formula converges much faster on a computer than does the method in
which the mutual impedances of the individual elements are summed. Re-
ferring to Fig. 1, the mutual impedance between the reference dipole and
the array when both are in a general medium of propagation constant

i«s‘ﬁds
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Fig. 1. Geometry of reference dipole and infinite array.

y = a + jB, and all elements have a sinusoidal distribution of the
Floquet type is

jBZSO jBXS¢ e'Yd1Cy

(1) Za = Din g-m P2(e) e . Z-me

c
fig 0 Tty

where the superscript denotes an array impedance, and

2

(2) ¢y = Jrl+$é-(s§+sg)

is a direction cosine. The other directions cosines c,, c, are given
in Eqs. (47) and (48) of Appendix A. The other terms ave

2



y[cossas‘J - COShyl]z

(3) P2(0) =
[éz;g +v;2]sinﬁzyz
. no?
(4) 50 = s51ne + N ’
z
kg
(5) s, = sine + ﬁ;-

n = /u/e is the characteristic impedance of the medium, and ¢ and
¢ are the phase differences between the current on adjacent array ele-
ments in the z and x directions respectively. The significance of the
summation indices will be clarified in the following section.

By applying simple Fourier theory during the derivation of Eq. (1),
we instead obtain an expression for the mutual impedance between the
reference dipole and a single array element centered at the origin of
the coordinate system shown in Fig. 1:

n/8D, /8D,
6 = | | 23 d(sine)d(sine) .
-n/BDZ -ﬂ/BDx

The details of the derivation are given in Appendix A. The deri-
vation of Eq. (1) is implicit in Appendix A.

I11. INTERPRETATION OF THC RESULT

Notice that in Eq. (6) that the integration is done with respect to
the variables sin¢ and sine which by Eqs. (2), (47) and (48) control the

direction of propagation of the piane waves emitted by the infinite array
(changing the phase of the current on the elements to control the direc-

tion of radiation is called scanning). Therefore implicit in Eq. (6)

is a plane wave expansion of the spherical wave field emitted by a single
dipole, and the technique is called the Array Scanning Method (ASM).

The advantage gained in this approach is that a clear physical inter-
pretation is obtained, viz. that the plane waves are emitted by an in-
finite array in which the wanted antenna is a member element.

It is instructive to examine the behaviour of the direction cosine
cy. Figure 2 shows c, for an array having a spacing D, = 3.5\ with all
e¥ements driven with ¥qua1 phase (sine = sin¢ = 0), bo%h for free space,
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and for a lossy medium of constitutive parameters ep=1, a = .001 mhos/
meter. The values are plotted for k, = 0.

For nc loss, when o = 3, ¢y is real. This means that the array
emits propagatung wa"es in directions specified by the direction cosines
Since kg = 0, ¢, = 0 so that the direction oi radiation is
afwayg 1n the y-2 plane The radiation dssociated with ng = 0 occurs in
a direction specified by the element phases, sin¢ and sing, If sing =
sing = 0, the array radiates broadside. This is the principal direction
or main lobe. For ny =1, 2 yr 3, the radiation occurs in other direc-

tions; these are the grating lobes.

When n, > 3, c, becomes imaginary, so that the plane waves in Eq.
(1) are non- propaga¥1ng or evanescent waves. The imaginary direction
cosines specify the directions of propagation into imaginary space. The
evanescent waves decay rapidly as the spacing dy from the array increases,
and as n, increases. 1% is this rapid decay which makes Eq. (1) con-
verge rapidly.

When the medium is lossy, ¢, is complex and lies on the curve shown
in Fig. 2. Thus the propagating waves are attenuated, and there are no
purely evanescent waves for an infinite array in a lossy medium. How-
ever, when n, > 3 the attenuation factor becomes so large that in prac-
tice the waves decay in the same way as in the lossless case.

In Eq. (6) it is convenient to choose the array spacings Dy =D, =
0.5x, so that the limits of integration become -1 and +1. F1gure 3
depicts the region of integration for the half-wavelength spaced array
in free space. For free space this diagram is known as the direction
cosine plane[4]. It is seen that Eq. (6) corresponds to scanning the
principal beam of the array over a cell cons1st1ng of all rral space
(that within the circle) and part of imaginary space. Further, be-
cause of the form of the summation in Eq. (1) the integration is effec-
tively being carried out over all space {in Fig. 3, as the main lobe
scans the p1ctured square cell, the evanescent modes are scanning an
infinite nu?b gf 1dent1ca1 square cells covering all space). Notice
that wren cg c, is imaginary and the array does not radiate.
Under this cond1§10n Ehe mtual 1mpedance is purely reactive. Notice
also that when c£ + ¢ , Cy = 0 and the mutua) impedance is infinite.
It is this "infinite r1dge" on the real-imaginary space boundary which
make; Eq. (6) diffi~ult to evaluate numerically for a free space medium.
However numerical experiments show that the integral does converge when
the "pole" is approached. This verifies a conclusion reached on purely
physical grounds: if the integral did not converge the mutual impedance
between two d1poles would be infinitz regardless of spacing. However
when the medium is lossy, ¢ y is never zero, and it is then straight-
forward to evaluate Eq. (6) numerically. Figure 4 gives an c:..ample of
the variatica of the mutual impedance between the reference element and
an array in a lossy medium as the scan angles ¢ and ¢ are varied. The
resistance and reactance (snown separately in Fig. 4) are plotted for
the first quadrant of the square cell depicted in Fig. 3. The position
of the ridge is shown clearly.
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IV. THE IMPEDANCE OF DIPOLES IN
A LOSSY HALF-SPACE

When the separation d of the reference dipole and the array is set
equal to the dipole radius a we obtain the self impedance[5]. Next,
the mutual impedance of an image antenna in a plane interface can be
computed simply by including a plane wave reflection coefficient for
each plane wave in Eq. (1). The input impedance of a sinusoidal dipole
parallel to a plane interface is then given by

(7) Z1n = ZM(a) + "n K ZM(Zd )
o 0

The geometry is shown in Fig. 5. no,ko is an effective plane wave
reflection coefficient (f.e., including dipole poiarization decoupling
and surface waves when they exist) for an array of z direced dipoles
parallel to a plane interface. It is given by [3]

1 I 22J%'é"\) ’(]'ci)‘(?r)cy
(8 - Ly
Tk (1-¢,)2(1-¢,2) Cyczii) S0 - ) +(°2 ¢
J e y )Y
et
, &) 0 - )
tcC - pr———
¢, + |F- 0 -cd)

where Cy» € and ¢, are the direction cosines of the incident plane
wave. ¢' ald ed are the complex dielectric constants of the medium
containing the antenna and the half space respectively, and are given
by

—

(Vo)

~
™
"

£ = Jo/uw ;1

(10) eé ey - joz/w

e T T
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Fig. 5. Geometry of dipoie parallel to a plane interface,

The model of Eq. (7) obtained using a sinusoidal dipole represents a
two segment moment method solution using the sinusoidal reaction technique
{2]. Hence £q. (7) can be used in mulitisegment moment method solutions
using piecewise sinusoidal expansion dipoles and Galerkins method.

To demonstrate the utility of the ASM several exampies of the in-
put impedance of a 0.1 m long, 0.00' m radius sinusoidal dipole parallel
to plane interfaces have been computed at a frequency of 300 MHz. Al
media are lossy dielectrics (8 > o) at 300 MHz. In computing these re-
sults the displacements X and Z were zero, and advantage was taken of
the symmetry of Eq. (6) about the sind and sin¢ axes, 1.e., integration
need only be done for positive sin¢ and sing. The integration was done
by the trapezoidal rile, and the required number of integration steps N
along each axis, and the required convergence accuracy for the series
were determined by numerical experiment. This involved comparing the
mutual impedance compJted using £q. (6) to those computed by the induced
emf method using closed form expressions for the exponential integrals.

For a frequency o7 300 MHz, the following values given in Table I
consistently gave accuragics better than 2%. A reduction in the con-
vergence accuracy to 107 gave an accuracy of about 5%.

e i i i




TABLE I

SUGGESTED VALUES FOR N AND CONVERGENCE ACCURACY
AT 300 MHz. VALUES ARE FOR TRAPEZOIDAL INTEGRATION

o d N Convergence
accuracy
.001 < 0.2 © 15 1074
.01 > 0.22 15 10-4
< 0.2) 10 1074
0.1 all d 10 104
1.0 all d 6 10-4

Since Eq. (1) converges more slowly as the distance d becomes small,
the computing efficiency was further improved by computing the self
impedance of the dipole (the first term in Eq. (7)) by the induced emf
method. The plane wave expansion was used only to calculate the mutual
impedance of the image in the interface.

Figures 6 and 7 show the input impedance of the dipole when it
approaches an interface which has a different permittivity. Results
are presented for the dipole on both sides of the interface. Figure 6
shows that when the conductivity ¢ = .001 mhos/m there is little change
in the input resistance, but the reactance is lower when the dipole is
in the medium of higher permittivity. This occurs because the shorter
wavelength in medium 1 means that the dipole is electrically longer and
therefore is nearer to resonance. The smooth reactance change as the
dipole approaches the interface occurs because of the influence of the
nearby half-space on the wavelength as the dipole approaches the inter-
face. When the conductivity of both media is increased to 0.01 mhos/m,
we observe in Fig. 7 that the input resistance has increased significantly.
This occurs because the characteristic impedance n for the lossier medium
has a larger imaginary part. Thus the evanescent modes summed in Eq. (1),
which affect only the reactance when the medium is lossless (n real),
now contribute significantly to the resistance because of the complex
n multiplier in Eq. (1)

Figures 8-10 show the input impedance when the dipole approaches
the interface of a medium of different conductivity. When the conduc-
tivity is low, as in Fig. 8, there is little change in the wavelength
and in the real part of n, so that there is 1ittle change in the dipole
reactance. The relatively large change in the imaginary part of n causes
the observed change in the input resistance. In Fig. 9, when the con-
ductivity is increased so that there is a significant wavelength change

10
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between the media, a significant reactance change is observed. An inter-
esting observation is that practically all the resistance change occurs
when the dipole is in the medium with the lowest conductivity. This
indicates that the medium of lowest characteristic impedance absorbs most
of the power supplied to the dipole when the dipole is close to the inter-
face but is located in an adjacent medium of higher characteristic imped-
ance. This effect is even more pronounced in Fig. 10 where the two media
differ in conductivity by two orders of magnitude.

Because of their simplicity dipole antennas make good subterranean
radar antennas[6]. Consequently the characteristics of dipoles buried
in the ground near the earth-air interface are of interest. Figure 11
shows how the input impedance of a 0.001 m radius, 0.1 m long dipole
varies with different burial depths in earth having constitutive para-
meters ¢ = 4, o = .01 mhos/m. Three curves are shown. One is a direct
application of Eq. (7). For comparison results obtained from a four
segment moment method using sinusoidal bases and Galerkins method with
Eq. {7) to obtain the impedance matrix elements are also presented.
Note that for the electrically short dipole considered good accuracy is
obtained with a two segment solution. This is further confirmed by the
eight segment solution by Richmond[7] for a homogeneous medium (i.e.,

d = =),

Also presented in Fig. 11 is a comparison with a Sommerfeld inte-
gral solution by program WFLLL2B[8]. It is emphasized that with this
program 21 segments were required to obtain the results presented, which
is equivalent of 105 segments per wavelength in the earth. In comparison
it is seen thal good results are obtained for this antenna (which is 0.2x
long in the earth) by using only two segments and the ASM. It is noted
also that with WFLLL2B and 21 segments there is still some difficulty in
matching the result for a homogeneous medium with those for the interface.
Although the reactances cbtained by the two methods differ slightly, the
results are consistent.

The behaviour of the impedance in Fig. 11 is consistent with that
observed for a dipole approaching a medium of lower conductivity shown
in Figs. 9 and 10. Note that results could not be computed for the
dipole in air with the interface present. A moment method solution[7]
using 8 segments in free space yielded a value of 1.69 - j1036 for the
input impedance. Note that the effect of conductive earth contact is
to greatly increase the input resistance. As noted before, the react-
ance change is primarily due to the change in the electrical length of
the antenna as the interface is approached. The resistance is largely
unaffected because of the power input to the antenna being absorbed by
the earth.

The computation time is observed to vary approximately as a-1. con-
sequently the results for small d are relatively time consuming. Table
IT shows the computer time required to calculate the results shown in
Fig. 6 for two convergence accuracies. The computer used was a Datacraft
6024, but the times have been presented for an IBM 370/168 computer by
running one example and converting all times by the speed ratio thus
obtained.
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TABLE 11

18M 370/168 COMPUTER TIME REQUIRED TO COMPUTE
THE RESULTS PRESENTED 1IN Fig. 6

distance from Y Seconds of CPU i Seconds of CPU
interface d time for time for
convergence = 10-3 convergence = 1074

Sm .85 0.87
.25 m 1.05 1.23
Jdom 3.37 4.27
05 m 8.41 12.4
Ot m 28.6 46 .3
005 m 45.6 103
.00l m 17 477

For d = .001 m, the impedance calculated with a convergence accur-

acy of 10-3 was 4.697 - j148.40. Wnen the convergence accuracy was in-
creased to 10-% the calculated impedance was 4.285 - j143.8¢ It is
doubtful if the improvement in accuracy justifies the large increase in
computer time. Large amounts of computer time are required when d is
less than about x/1000.

In Table IlI a CPU time romparison is made between the ASM and
the Sommerfeld program WFLLL2B[8]. Since the ASM is similar to a Somner-
feld approach[3] no dramatic differences in CPU time are observed. It
is apparent however that far fewer segments are needed with the ASM
because of the superiority of the piecewise sinusoidal current expansion
for wire antennas. It should also be nuted that the pilot subroutine
used trapezoidal integration. A significant improvement is likely if a
more efficient integration procedure is used.

it is also worth pointing out that our pilot subroutine which com-
putes the values of the integrand contains only 65 FORTRAN statements.
A further 13 statements are added to calculate no ko® and the integra-
tion subroutine contains 70 statements. !
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TABLE 111

1BM 370/168 CPU TIME IN SECONDS REQUIReD TO
COMPUTE THE RESULTS PRESENTED IN Fig. 11

d Array scanning method’ Program

(meters) WF-1.LL-28
4 segments 2 segments 21 segments

.25 m 5.6 1.2 68
dm 17.5 4.2 59
.05 m 56.3 12.3 79
Olm 341 45 105
.005 m 526 101 136

V.  THE IMPEDANCE OF DIPOLES IN A
CONDUCTING HALF-SPACE

Subterranean electromagnetic pulse radar systems for probing many
hundreds of meters into the earth must necessarily operate at low fre-
quencies[9]. Physically long antennas 1ying on the surface or buried
only a few centimeters from the surface are required. This close
electrical spacing to the surface threatens the viability of this method
for calculating the input impedance cf these antennas. Fortunately
advantage can be taken of the low frequency characteristics of the earth.

At low frequencies where the earth is classed as a conductor (a =
8), the higher attenuation constant assists convergence (rate of con-
vergence for large n, and k, in [q. (1) depends upon the real part of
y¢y,, which varies in a rather complicated way with frequency and con-
st¥tutive parameters). Further economies in computer time are possible
at low frequencies by reducing the number of integration steps N. This
is due to the increased attenuation between the array elements as the
wavelength becomes large (which means that the array spacing, which we
set at 0.5x in our numerical calculations, becomes large).

In this section calculations of the input impedance of a 1000 m
dipole in earth of constitutive parameters ¢, = 4, o = .01 mhos/meter
are presented for a frequency of 100 Hz. It was possible to calculate
results with the antenna as close as 2 cm to the interface with reason-
able expenditure of computer time (2 cm is about 1/150,000 of a wave-
length in the earth). For this example yood results were obtained when
the dipole was within 0.1x (¢ 300m) of the interface by evaluating
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only the integrand of Eq. (6) (i.e., N = 0) with sine = sin¢g = 0. This
means that the mutual impedance of the array is almost identical to the
mutual impedance of a single element. This occurs because at 100 Hz
the array is spaced 1/2 = 1581 meters between elements, and the high
loss means that only the fields of the center element are significant
providing the reference dipole is located near the center element.

Figurc 12 plots the error in the mutual impedance of two parallel
1000m sinusoidal dipoles in an infinite medium of «, = 4, ¢ = .01 mhos/
meier when calculated using this appreximation. The induced emf method
vas used as a reference. The error is seen to increase as the separation
of the dipoles is reduced. The errcor also increases when the separation
increases beyond 300m: this occurs because the spacing between the refer-
ence dipole and the adjacert-to-center elements of the array is less
than an order of magnitude smaller than the spacing of the reference
dipole and the center element. This error can be reduced by performing
the integration in Eq. (6), i.e., N > 0. However the integration was
observed to have little effect on the error at close spacings, supporting
the assumption that the mutual impedance is dominated by the fields of
the center element of the array. The computer time required is indicated
on Fig. 12: the saving is seen to be roughly 50x by comparison with
Table Il for similar electrical spacings.

Using the array approximation, the input impedance of the 1000m
dinole buried in the earth was calculated. The results _are shown in
Fig. 13. The convergence accuracy chosen was 0.5 x 10-3. Since the
induced emf method, which is used to calculate the self impedance, is
assumed accurate, and Fig. 1?2 gives the expected accuracy of the mutual
impedance of the image in the interface assuming perfect reflection, the
overall accuracy of the calculations presented in Fig. 13 can be estimated.
The error in the reactance is estimated to be less that 1% for all d, and
the eiror in the input resistance is estimated to be less than 2% wher
d = Im.

When d = 0.im, the error in the resistance exceeds 8%. It is inter-
esting to note that when d < 0.1m thc error in the mutual impedance com-
putations acts to make the mutual (and hence self) impedance constant.

This effect was also noticed when preparing Fig. 12, hence it is not a
property of the half-space (i.e., although the error increases as the spac-
ing decreases, the mutual impedance calculated by the ASM is observed to
become independent of spacing).

The economies in computer time (indicated by the CPU times included
in Fig. 13) obtained by the array approximation described in this section
make this technique useful for more accurate analysis of dipoles by the
moment method. As an example, the input impedance of the 10COm dipole
obtained from a four segment (equal 1engths§ moment method solution using
sinusoilu2l bases and Galerkins method is presented in Fig. 14. Note the
improvement 1n accuracy for small d, and the appearance of the "kink" near
d = =, commonly cbserved in the lossy dle]ectric results. Results for a
higher series convergence accuracy (10~%) are given in Fig. 15. As concluded
in the previous section, tHe improvement in accuracy does not warrant the
large increase in computer time.
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ns0.2+j0.20 | 73770 T areomi Ly
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Lz) 0.3 d=xim(14)
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5021
4
0.4
0 ] | | ] J L 1 Bl | ] 1
0O 0 G2 03 04 0.5 06 07 08 09 1O .4 12
RESISTANCE { OHMS)
Fig. . Input impedance o7 1000m long sinusoida} dipole

It is interesting to note from fig. 15 that when the dipole approaches
the air interface from the conducting medium that the only significant
change occurs in the input resistance. The rasults presented indicarte
that if the dipole was brought from d = » into close contact with the

buried in a conducting half space {earth), The

computation times in

computer are given in parenthesis,

seconds for an IBM 270/168

interface then the input resistance would approxImately double. This !
confirms the simple physical argument: there is only one conducting half IS
space to shunt the antenna so that the input resistance is coubled. i
1
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for input impedance of 1000m long dipole buried in a

conducting half-space gearth).
IBM 370/168 computation times

accuracy was 0.5 x 107°.

The series convergence

in seconds are given in parenthesis.
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REACTANCE ( OHMS)

MEDIUM 1 MEDIUM 2

(EARTH) (AIR)
=0
€,=4 €, | /d
d=300m(0.2)
0.6— @<0.01 ™% /m| o0 4=100m(0.83}
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d=s2m(35)
ds|im(58)
0.3 d:0.5m(92)
d=0.tm(198)
0.2l— 4:0.05m (252)
€ d=0.02m (307)
o.t—
o) 04 0.2 03 0.4 05 06 07 08 09 O 1.4 @2

RESISTANCE (OHMS)

Fig. 15. Four segment sinusoidal Galerkin moment method solution
for input impedance of 1000m long dipole buried in a
conducting half apace (earth). The series convergence
accuracy was 107%. IBM 370/168 computation times in
seconds are given in parenthesis.
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Multisegment moment method solutions with small segments are more 3
accurate than simplie two segment solutions because the current distri- 3
bution is more accurately represented. With a two segment solution it
is assumed that the current distribution remains unchanged as the dipole
approaches the interface. The accuracy of this assumption can be gauged
from the four segment solution. Table IV shows the current relative to
the terminal current at a point hal fway between the center terminals and
the dipole tip as the dipole aporoaches the interface. If the medium
containing the dipole was lossless, the magnitude of the current would
have been slightly greater than 0.5 (since the sinusoidal shape of the
distribution begins to show when the antenna is 0.3x long) and the phase i
near zero. The attenuation of the medium acts to reduce the magnitude H
of the current along the antenna, and causes the negative phase angle. E
The physical explanation is that the reflection of the input wave from 3
the tips of the antenna is attenuated, and when summed with the outgoing ;
wave results in a current amplitude with a negative phase angle. Notice

in Table IV that as the antenna cones close to the surface the immediate

environment of the antenna becomes less lossy, thereby reducing the phase

and increasing the magnitude of the current at the midpoint of each side

of the antenna.

bt it

TABLE 1V

AMPLITUDE OF THE CURRENT RELATIVE TO THE TEPRMINAL
CURRENT 250m FROM THE TERMINALS OF A CENTER FED
1000m DIPOLE IN CONDUCTING EARTH PARALLEL
TO AN AIR INVERFACE

{
distance from Relative amplitude :
interface d of current i
(metres)
300 0.470/-15.7°
100 0.46%.. =15 .6°
60 0.463; - °
40 0.464/ - °
20 0.464/- °
10 0.465/-13.9°
5 0.467/-13.3°
2 0.470/-12.4°
1 0.471/- °
0.5 0.473/- °
0.1 0.476/- °
0.05 0.476/-10.4°
0.02 0.477/-10.3°
25
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VI. CONCLUSIONS

A simple alternative formulation of the classical Sommerfeld pro-
biem called the Array Scanning Method (ASM) has been applied to linear
sinusoidal antennas in a lossy half space. The advantage of the method
are:

1. It is simple to program and the resulting program occupies
significantly less storage than does a typical Sommerfeld
program.

2. The formulation has a clear physical interpretation which
greatly facilitates its use.

It is shown that at low frequencies, the input resistance of a
dipole buried in the earth approximately doubles when it is moved from
large depths to a position near the interface. This confirms the simple
physical argument: there is only one conducting half-space to shunt the
antenna so that the resistance is doubled.

Al though the numerical evaluation of the integral is not as
straightforward when the antenna is in free space, the method has been
shown to converge in this case, and with a suitable integration pro-
cedure could be applied to the analysis of linear antennas above the

earth.
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APPENDIX A

MUTUAL IMPEDANCE OF PARALLEL SINUSOIDAL DIPOLES
BY THE ARRAY SCANNING MFTHOD

Consider a reference dinole located parallel to an infinite plane
array in a lossy medium with ¢« and o, as shown in Fig. 1. The displace-
ments from the x axis are X and Z. Foilowing Munk, et al[3] the current
on the element in the kth column and nth row of *je array is given by

jsnDysine  jkD,sing
(]]) Ikn= e e

where I = sinhy(2-|z|)/sinhys iz the current on the centre element,

y = atjp is the propagation constant, and ¢ and ¢ are phase differences
in the current on adjacent elements in the z direction and x direction
respectively.

The mutual impedance between the reference dipole and the array Z§ can
be obtained by summing the mutual impedances of each element of the array:

jBnDysine  JpkD,sin¢
e

ner~1 8
~N
(]
-
>
3
1

(12) Zy = Z

Z, «n s the mutual impedance between the reference dipole and the knth
e&ment of the array, and is given by[5)

- L “Yr -yr -r
(13) Ly = T j [ €122 ) coshye 9;—$l]
’ 4nsinhSye -2 1 2 0

sinhy(2-]2|)dz

where n is the characteristic impedance of the medium, and

2 . 2, 42 2
(14) ro = (kD - X)“ +dy + (nD, - Z - z)
(8)  rd = (k0 - X2+ a2 4 (D, - Z -2+ 0)?
(16)  r2 = (kD - X)2 + df + (nD, - Z - z -2)?

as shown i Tig. 16.
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Fig. 16. The geometry involving the reference dipole at
(x,-d,Z) and the kn'th dipole of the array.

Equation (12) can be written as

a oo jakD,sing

(]7) ZM = Z] €

k=-w
where

o L -yr ~Yr =Yrg

(18) Zy = _——_:ﬂf_—_ 2 J [e r] + € . 2 2e - COShy%]

4nsinh“ye n=e-= /-4 1 2 0

jBnDzsinﬁ
e sinhy(2-]2])dz

Reversing the order » integ-ation and summation in Eq. (18) gives

29




@

e'YY‘]

-Y
r‘0

-n (Q -er e
(19) 7 = ————— | sinhy(2-[z]) ¥ + & -2

41\'5inh271 J'ﬁ. =~ | r‘z

JanD,sine
e dz

By combining the Poisson sum formula

= jnwt = 2n
(20) [ Flna)e™ =T § fltmgT) s TR

n= - no-’cn (o]
and the frequency shift theorem

Fourier jHt

(21) Flw-H) ¢&— f(t) e
where W is a radian frequency shift,we obtain

o . « JW{t+n_T)
(22) T OF(u-W) ed™toT T e © 7 f(tengT)

n:-m n:-m

The summation in Eq. (18) can be done by applying Eg. (22) with

the Fourier Transform pair

=yJa“+(w-uy) Fourier  Jjnyt (2) -72 2
e D _J. HO" (a -t )
a2+(U'w1)2

e
(23) 5
and by making the following substitutions

(28) w =D,
(25) t =8 sine

z-2 for n
(26) wy =42 for r,

z+x for ro
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(27) N =2
(28) a? = (kDy - X)2 + d°

(29) T - b,

tquation (18) then becomes

-0 L bl jBZSe
(30) Z] z —— J sinhy(i-lzl) E e (2(;055156 - ZCOShyl)
2D,sinheye )¢ ~

where s, is defined in Eq. (5).

After doing the integration we get

® i8Zs
(3N Zy = l%ﬂ- 7 Pz(e)e 0 [Héz) (al—vz-ﬁzsg ]

z ny=-=

where Pz(e) is defined in Eq. (3).

Zy is the mutual impedance between the reference dipole and an in-
finite column of dipoles spaced D, metres apart in the z direction. The
metual impedance between the centre dipole only and the reference dipole
can now be inferred from the column array impedance £q. (31) by using
the Fourier series for a periodic function:

o @

(32) T 7 g(tsmT) = §  G(nw) edNet

M= 1= -wo

T/2 .
(33) where G(nw) = J g9(t) ednot 4o

-T/2
Combining Eqs. (32), (33) and (22), and setting n=0, we obtain
JW(ten,T)

T/2 ®
2 e F(t+nyT) dt

-T/2 No=-=

(34) F(-W) = j

3
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Making the substitutions given in Eqs. (24) - (29), we obtain

n/8D,
(35)  Zge = | Z; d(sine)
-n/8D,

2, o is the mutua) impedance between the reference dipole, and the
centre element of the z oriented column of dipoles located at z=0. Con-
sider £q. (35) when the element spacing 0, = »/2. The integration Timits
then correspond to -n/2 < 6 < n/2. Physically Eq. (35) mecans that the
phase of the current on the elements adjacent to the centre element is
varied by = radians, the next elements by 2= radians, and so on, so that
when the integration is done their mean field is zero at the reference
dipole. Thus &ll elements but the centre element are "phased out". A
time-frequency analagy is that the d.c. term is the average value of the
time signal.

By substituting Eq. (35) into the expression for the mutual imped-
ance of the infinite array £q. (12) we obtain the mutual impedance of
the reference dipole and an infinite number of dipoles spaced along the
X axis Zo,ko

s o n/'BDZ o jels
(36) 2oko = B2 T J PZ(e) e °
Z K= < -n/80, ny=~
" s JekD,sing
Hé‘) (d]«w‘-stg) d(sing) - e 2

Reverse the order of summation and integration to obtain

_in /80, o JBls
(37) Zo,ko = 2 | ] ) e °

° (2
! Hé N(a]2-%2)
dn/BDZ Ng~-= k=

-

jsszsin¢
e d(sine) .

The k summation can be summed by again using Eq. (22) with the
Fourier transform pair

3a][ 252 2] 12
[ T R H{2)([012-8%52) [udea? )

'nJ—[ -’yz-stg] -tz

(38) €

3¢




=

e

The necessary substitutions are

39 = 2n
(39) T 0.
(40) t = Bsing
(4]) w= Dx
(42) W= X,
so that
. n/30 e q JEZS o JBXs
(43) Z9,ko = 61%3 ( E Pe(e)e T e
> Xz -‘T/BD : ar koz-an
'Jd‘ -y ~F“(s2 ?3
€ . d{sinse)

J +2-22(s%452)
¢ ¢

vhere S is given in Eq. (9).

By again applying £q. (34) with Eqs. (39) - (42) we eliminate all but
the centre element. The result is

/80, IH/BDx

(44) z = I, d(sine)a{sing)
0,00 ] s/e0, J-nsen, " .
where
s _ 2 Z
(a5) y = 5T 1 Ple)e ) =
X°Z Ny=-= kg=== ]'Yz-B (sg+si)

Equation (45) is the mutual impedance between the reference dipcle and
an infinite array, and £Eq. (44) shows how the mutual impedance of a
single element can be inferred from the array impedance by phasing out
all elements but the centre element.
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The important feature of Eq. (45) is that it contains a sum of plane
waves. Recognizing this it car be written as

. - -ydc
. - jlsy JEXS YRy

(46) Iy=58 1 Piode ] e f 5
X'z ng=-e ko= - y

where the direction cosine Cy for the plane waves emitted by the array
is defined in Eq. (2).

To ohtain Eg. (46) it was necessary to use v-1 = -j so that the
waves emitted by the array attenuate as they propagate away from the
array. In Eq. (2) the required root is the principal roct. The other
direction cosines are

JBS

(47) € = ~—7Q
JBsS
(48) <, = 9
Y
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